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Abstract
We construct Green’s functions and a trace formula for pairs of stationary Dirac
equations under Sturm–Liouville boundary conditions, where the equations are
related to each other by a Darboux transformation. Our findings generalize
former results (Pozdeeva E 2008 J. Phys. A: Math. Theor at press).

PACS numbers: 03.65.Ge, 03.65.Ca

1. Introduction

The Darboux transformation is one of the major tools for constructing integrable cases of
quantum-mechanical equations. While originally it had been developed for equations of
stationary Schrödinger type [5], the Darboux transformation has been proved generalizable to a
variety of linear and nonlinear equations. Examples of linear equations include generalizations
of the stationary Schrödinger equation, such as the time-dependent case [3, 6], the effective
mass Schrödinger equation [13, 14] and the Schrödinger equation with weighted energy
[16, 17]. Besides, the Darboux transformation has been found to be applicable to the stationary
Dirac equation [8, 11], which we focus on in the present paper. In particular, we consider
a Dirac equation with Sturm–Liouville boundary conditions on a real interval and study the
behavior of the associated Green’s function and its trace under Darboux transformations. The
interest in the trace of the Green’s function that belongs to a stationary Dirac equation lies
in the fact that its imaginary part gives the spectral density (density of energy levels). For
Schrödinger equations and effective mass Schrödinger equations it has been shown [9, 15] that
traces of Green’s functions that are related by Darboux transformations, fulfil a surprisingly
simple relation (trace formula). In the present paper we show that the same trace formula
is valid for Green’s functions of Dirac equations with Sturm–Liouville boundary conditions

3 Also ICP RAS, Kosygina Str. 4, 119991 Moscow, Russia.
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that are related to each other by a Darboux transformation. In particular, we state the Green’s
function of the boundary value problem and its trace in closed form, then we show how the
Sturm–Liouville boundary conditions change under the Darboux transformation, and finally
we derive the trace formula. Note that the results in this paper generalize former findings
[10], as in the present case we generalize the potential used in the Dirac equation and the
boundary conditions. Our generalized boundary conditions involve linear combinations of
the solution’s values at the interval border points; such boundary conditions are frequently
used in applications, e.g. in modeling fermions on a terminated honeycomb lattice [1], inverse
spectral problems [2] and the study of relativistic supersymmetric systems with singularities
[18]. An overview on Dirac equations with generalized boundary conditions can be found
in [4]. For the sake of completeness, in section 2 we review basic facts about the Darboux
transformation for the Dirac equation. Section 3 contains a summary of our results, which we
prove in section 4. Finally, section 5 is devoted to an example.

2. Preliminaries: the Darboux transformation

Let σj , j = 1, 2, 3, denote the Pauli matrices, let I be the identity matrix and let γ = iσ2. The
stationary Dirac equation in one dimension can be written in the form

γ� ′(x) + V0(x)�(x) = EI�(x), (1)

where � is a two-component spinor, the constant E denotes the energy and the (2 × 2)-matrix
potential V0 reads as

V0(x) = r(x)I + p(x)σ1 + q(x)σ3

=
(

r(x) + q(x) p(x)

p(x) r(x) − q(x)

)
. (2)

Here r, p and q are real-valued functions. Now, let the two spinors u1 and u2 be linearly
independent solutions of the Dirac equation (1) at energies λ1 �= E and λ2 �= E, respectively,
with λ1 �= λ2, such that the matrix u(x) = (u1(x), u2(x)) is invertible. Define the Darboux
transformation �̃ of � as

�̃(x) = � ′(x) − u′(x)u−1(x)�(x). (3)

Then this function �̃ solves the Dirac equation

γ �̃ ′(x) + V1(x)�̃(x) = EI�̃(x), (4)

where the transformed potential V1 is given by

V1(x) = V0(x) + [γ, u′(x)u−1(x)].

For more details on the Darboux transformation for the Dirac equation see e.g. [11] and
references therein.

3. Summary of results

For two arbitrary real numbers α and β we consider the following Dirac equation with
homogeneous boundary value conditions on the interval [a, b] ⊂ R:

γ� ′(x) + (V0(x) − EI)�(x) = 0 (5)

(cos(α), sin(α))�(a) = 0 (6)

(cos(β), sin(β))�(b) = 0. (7)
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The Hamiltonian associated with the Dirac equation (6) has discrete spectrum, if the boundary
conditions (6) and (7) are present (this prevents Green’s function trace from divergence) [7].
Let �1 be a solution of the Dirac equation (5) that fulfils the boundary condition (6) and let
�2 be a solution of the Dirac equation (5) that fulfils the boundary condition (7).

3.1. Green’s function

Green’s function G of the Dirac equation (5) with boundary conditions (6), (7) is given by

G(x, y) = 1

C

(
�2(x)�T

1 (y)θ(x − y) + �1(x)�T
2 (y)θ(y − x)

)
, (8)

where θ stands for the Heaviside distribution and C is a constant that is determined by the
choice of �1 and �2.

3.2. The boundary conditions

Let �̃1 and �̃2 be the Darboux transformed solutions �1 and �2, respectively, as defined in
(3). Recall that �1 satisfies the first boundary condition (6) and that �2 satisfies the second
boundary condition (7). If the corresponding auxiliary functions u1, u2 solve the boundary
value problem (5) at energy λ1 and λ2, respectively, and fulfil both boundary conditions (6)
and (7), then the functions �̃1 and �̃2 satisfy

�̃1(a) = �̃2(b) = 0, (9)

generally in the sense of a limit. Furthermore, Green’s function G̃ of the Darboux transformed
Dirac equation (4) with boundary condition (9) is given by

G̃(x, y) = 1

C̃
(�̃2(x)�̃T

1 (y)θ(x − y) + �̃1(x)�̃T
2 (y)θ(y − x)), (10)

where C̃ is a constant that is determined by the explicit form of �̃1 and �̃2.

3.3. The trace formula

The following relation (trace formula) holds between Green’s functions G and G̃:∫ b

a

tr(G̃(x, x) − G(x, x)) dx = 1

E − λ1
+

1

E − λ2
, (11)

where tr denotes the matrix trace.

4. Proof of results

In the following we show that the three statements given in the previous section hold.

4.1. Green’s function

We must show that the function G in (8) is symmetric in its variables, that it fulfils the boundary
conditions (6), (7) and that application of the left-hand side of the Dirac equation (5) to G
gives a delta δ(x − y)I . First, it is apparent that function (8) is invariant under the exchange
of x and y. In order to show that it satisfies the boundary conditions (6) and (7), let us assume

3
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that x � y in (8), which implies θ(x − y) = 1, θ(y − x) = 0. Writing �j = (�j,1, �j,2)
T

for j = 1, 2, we find

(cos(α), sin(α))G(a, y) = (cos(α), sin(α))
1

C
�2(a)�T

1 (y)

= 1

C

(
cos(α)�2,1(a)�1,1(y) + sin(α)�2,2(a)�1,1(y)

cos(α)�2,1(a)�1,2(y) + sin(α)�2,2(a)�1,2(y)

)T

= 0,

because of the second boundary condition (6). In the same way one shows that the
second boundary condition (7), when applied to G, is satisfied. If x < y, then G also
fulfils the boundary conditions due to its symmetry in x and y. It remains to show that
substitution of G in the Dirac equation gives a delta. Making use of the differentiation rules
θx(±x ∓ y) = ±δ(x − y) and the Dirac equation (5), we get

γ
∂

∂x
G(x, y) + (V0(x) − EI)G(x, y)

= γ
1

C

(
� ′

2(x)�T
1 (y)θ(x − y) + � ′

1(x)�T
2 (y)θ(y − x)

)
+ γ

1

C

(
�2(x)�T

1 (y) − �1(x)�T
2 (y)

)
δ(x − y)

+ (V0(x) − EI)
1

C

(
�2(x)�T

1 (y)θ(x − y) + �1(x)�T
2 (y)θ(y − x)

)
= 1

C

(
(EI − V0(x))�2(x)�T

1 (y)θ(x − y) + (EI − V0(x))�1(x)�T
2 (y)θ(y − x)

+ γ
1

C

(
�2(x)�T

1 (y) − �1(x)�T
2 (y)

)
δ(x − y)

+ (V0(x) − EI)
1

C

(
�2(x)�T

1 (y)θ(x − y) + �1(x)�T
2 (y)θ(y − x)

)
= γ

1

C

(
�2(x)�T

1 (y) − �1(x)�T
2 (y)

)
δ(x − y). (12)

We cannot continue until we evaluate explicitly the components of the latter expression. We
find

γ
(
�2(x)�T

1 (y) − �1(x)�T
2 (y)

)
=

(
�2,2(x)�1,1(y) − �1,2(x)�2,1(y) �2,2(x)�1,2(y) − �1,2(x)�2,2(y)

�1,1(x)�2,1(y) − �2,1(x)�1,1(y) �1,1(x)�2,2(y) − �2,1(x)�1,2(y)

)
.

(13)

Restriction to y = x gives

γ
(
�2(x)�T

1 (x) − �1(x)�T
2 (x)

)
=

(
�2,2(x)�1,1(x) − �1,2(x)�2,1(x) 0

0 �1,1(x)�2,2(x) − �2,1(x)�1,2(x)

)
,

(14)

that is, the matrix takes diagonal form, where the diagonal elements are the same. We will
now show that these elements are constants with respect to x by proving that their derivative
vanishes. To this end, we write them in matrix form:

�1,1(x)�2,2(x) − �1,2(x)�2,1(x) = �T
1 (x)γ�2(x).

4
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We compute the derivative of the latter expression, using the fact that γ T = −γ :

d

dx

(
�T

1 (x)γ�2(x)
) = (

�T
1

)′
(x)γ�2(x) + �T

1 (x)γ� ′
2(x)

= −(γ� ′
1(x))T �2(x) + �T

1 (x)γ� ′
2(x). (15)

Now we make use of the Dirac equation (5), that is, for j = 1, 2 we have

γ� ′
j (x) = (EI − V0(x))�j (x),

which we insert into expression (15) and arrive at

d

dx

(
�T

1 (x)γ�2(x)
) = ((V0(x) − EI)�1(x))T �2(x) + �T

1 (x)(EI − V0(x))�2(x)

= �T
1 (x)((V0(x) − EI)T + EI − V0(x))�2(x).

From the explicit form (2) of the potential V0 we infer V T
0 = V0. Since furthermore EI is

diagonal, we have that

d

dx

(
�T

1 (x)γ�2(x)
) = �T

1 (x)(V0(x) − EI + EI − V0(x))�2(x)

= 0.

Thus, −�T
1 (x)γ�2(x) is a constant and we define the constant C via

C = �T
1 (x)γ�2(x). (16)

Insertion of this C into (12) finally gives by means of (13) and (14) that[
1

C
γ
(
�2(x)�T

1 (y) − �1(x)�T
2 (y)

)]
|y=x

δ(x − y)

=
[

1

�T
1 (x)γ�2(x)

γ
(
�2(x)�T

1 (y) − �1(x)�T
2 (y)

)]
|y=x

δ(x − y)

= δ(x − y)I.

This, together with (12), gives the final result

γ
∂

∂x
G(x, y) + (V0(x) − EI)G(x, y) = δ(x − y)I.

This proves the first statement in the previous section.

4.2. The boundary conditions

For j = 1, 2 let uj = (uj,1, uj,2)
T be the auxiliary solutions of the Dirac equation (5) at

energies λ1 �= E, λ2 �= E with λ1 �= λ2, that fulfil the boundary conditions (6) and (7).
Furthermore, let u = (ujk) be the (2 × 2)-matrix that contains the auxiliary solutions in its
columns and let λ be the diagonal matrix that has λ1 and λ2 as its diagonal elements. The
matrix u satisfies the Dirac equation (5) in the following sense:

γ u′(x) = u(x)λ − V0(x)u(x). (17)

We need to show that the Darboux transformed solution �̃1, as given in (3), fulfils the boundary
conditions (9), if �1 fulfills the first boundary condition (6). Afterward, we show that �̃2

fulfils (9), if �2 fulfils the second boundary condition (7). As for the first case, consider the
Darboux transformation (3):

�̃1(x) = � ′
1(x) − u′(x)u−1(x)�1(x). (18)

5
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We cannot evaluate this expression at x = a (as the matrix u−1 is singular there), but we can
take the limit x → a in (18). To this end, we need the explicit form of u−1, given by

u−1(x) = 1

det(u(x))

(
u22(x) −u12(x)

−u21(x) u11(x)

)
.

This we can use to write the last two factors on the right-hand side of (18) in components.
Using �1 = (�11, �12)

T , we get

u−1(x)�1(x) = 1

det(u(x))

(
u22(x)�11(x) − u12(x)�12(x)

−u21(x)�11(x) + u11(x)�12(x)

)
. (19)

We now compute the limit x → a of the latter expression, employing the rule of de l’Hopital.
To this end, we differentiate numerator and denominator of each component in (19). We find[

d

dx
(u22(x)�11(x) − u12(x)�12(x))

] (
d

dx
det(u(x))

)−1

= u′
22(x)�11(x) + u22(x)� ′

11(x) − u′
12(x)�12(x) − u12(x)� ′

12(x)

u′
11(x)u22(x) + u11(x)u′

22(x) − u′
21(x)u12(x) − u21(x)u′

12(x)[
d

dx
(−u21(x)�11(x) + u11(x)�12(x))

] (
d

dx
det(u(x))

)−1

= −u′
21(x)�11(x) − u21(x)� ′

11(x) + u′
11(x)�12(x) + u11(x)� ′

12(x)

u′
11(x)u22(x) + u11(x)u′

22(x) − u′
21(x)u12(x) − u21(x)u′

12(x)
.

This we evaluate at x = a and obtain together with (19) that

u−1(a)�1(a) =

⎛
⎜⎜⎝

u′
22(a)�11(a) + u22(a)� ′

11(a) − u′
12(a)�12(a) − u12(a)� ′

12(a)

u′
11(a)u22(a) + u11(a)u′

22(a) − u′
21(a)u12(a) − u21(a)u′

12(a)

−u′
21(a)�11(a) − u21(a)� ′

11(a) + u′
11(a)�12(a) + u11(a)� ′

12(a)

u′
11(a)u22(a) + u11(a)u′

22(a) − u′
21(a)u12(a) − u21(a)u′

12(a)

⎞
⎟⎟⎠ .

(20)

We substitute the latter expression into the Darboux transformation (18) and evaluated at
x = a:

�̃1(a) =
(

d

dx
det(u(x))|x=a

)−1

(A�1(a) + B� ′
1(a)), (21)

where the constant A and the matrix B are given by

A = u′
12(a)u′

21(a) − u′
11(a)u′

22(a)

B =
(

u11(a)u′
22(a) − u12(a)u′

21(a) u′
11(a)u12(a) − u′

12(a)u11(a)

u′
22(a)u21(a) − u′

21(a)u22(a) u22(a)u′
11(a) − u′

12(a)u21(a)

)
.

(22)

Since the auxiliary functions satisfy the boundary conditions (6) and (7), we obtain from (22)
that

(cos(α), sin(α))B = 0. (23)

Now we can show that the Darboux transformed solution �̃1 = (�̃11, �̃22)
T satisfies the

boundary condition (6). Application of (cos(α), sin(α)) to (21) gives

(cos(α), sin(α))�̃1(a) =
(

d

dx
det(u(x))|x=a

)−1

× [A(cos(α), sin(α))�1(a) + (cos(α), sin(α))B� ′
1(a)].

6
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The latter expression vanishes, since �1 satisfies the boundary condition (6) and because of
(23):

(cos(α), sin(α))�̃1(a) = 0. (24)

Before we continue here, we need a reformulation of the Darboux transformation (18), where
we substitute the derivatives of � and u by means of (5) and (17):

�̃1(x) = � ′
1(x) − u′(x)u−1(x)�1(x)

= γ −1(EI − V0(x))�1(x) − (γ −1u(x)λ − γ −1V0(x)u(x))u−1(x)�1(x)

= γ −1(EI − u(x)λu−1(x))�1(x). (25)

We evaluate the latter Darboux transformation at x = a (the term u−1(a)�1(a) being given
by (20)), and apply (sin(α),−cos(α)) from the left. This renders (25) in the following form:

(sin(α),−cos(α))�̃1(a) = (sin(α),−cos(α))γ −1EI�1(a)

− (sin(α),−cos(α))γ −1u(a)λu−1(a)�1(a)

= (cos(α), sin(α))EI�1(a) − (cos(α), sin(α))u(a)λu−1(a)�1(a)

= 0, (26)

because (sin(α),−cos(α)) commutes with the diagonal matrix EI , and because �1 and the
columns of u fulfil the boundary condition (6). If we combine (24) and (26), then we obtain
that each component of �̃1 must vanish, that is,

�̃1(a) = 0,

which is the desired result. In a completely analogous way one obtains �̃2(b) = 0.

4.3. The trace formula

Before we can derive the trace formula (11), we need to establish a relation between the
constant C as defined in (16) and its counterpart C̃, given by

C = �T
1 (x)γ�2(x) = (�1,1(x)�2,2(x) − �1,2(x)�2,1(x))

C̃ = �̃T
1 (x)γ �̃2(x) = (�̃1,1(x)�̃2,2(x) − �̃1,2(x)�̃2,1(x)).

These expressions are in fact constants, as we have seen in (16). In order to relate the constants
to each other, let us consider C̃, taking into account that γ T γ = I and that the matrix product
inside a trace is commutative:

C̃ = tr
(
γ �̃2(x)�̃T

1 (x)
)

= tr
(
γ �̃2(x)�̃T

1 (x)γ T γ
)

= tr
(
γ �̃2(x)(γ �̃1(x))T γ

)
. (27)

Next, we replace the function �̃j , j = 1, 2 by the form given in (25), that is,

�̃j (x) = γ −1(EI − u(x)λu−1(x))�j (x).

Substitution of these expressions into (27) gives

C̃ = tr
(
γ (EI − u(x)λu−1(x))�2(x)�T

1 (x)(EI − u(x)λu−1(x))T
)

= tr
[
E2γ�2(x)�T

1 (x) − E
(
γ u(x)λu−1(x) + (u(x)λu−1(x))T γ

)
�2(x)�T

1 (x)

+ [u(x)λu−1(x)]T γ u(x)λu−1(x)�2(x)�T
1 (x)

]
. (28)

The coefficients of �2�
T
1 in the trace take a very simple explicit form:

γ u(x)λu−1(x) + (u(x)λu−1(x))T γ = γ (λ1 + λ2)
(29)

(u(x)λu−1(x))T γ u(x)λu−1(x) = γ λ1λ2.

7
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If we insert these relations into trace (28), we get

C̃ = tr
[
E2γ�2(x)�T

1 (x) − E (γ (λ1 + λ2))�2(x)�T
1 (x) + γ λ1λ2�2(x)�T

1 (x)
]

= (
E2 − E(λ1 + λ2) + λ1λ2

)
tr
[
γ�2(x)�T

1 (x)
]

= (E − λ1)(E − λ2)C. (30)

This is the relation between C̃ and C that we wanted to derive. Now we are ready to derive the
trace formula (11). To this end, consider Green’s function G as given in (8). Its trace reads
for y = x

tr(G(x, x)) = 1

C
tr
(
�1(x)�T

2 (x)
)

= 1

C
tr

(
�2(x)�T

1 (x)
)
. (31)

Since the expressions in the latter two lines are the same, we can choose either of them as a
representation of Green’s function’s trace. Let us take the first one (31) and consider Green’s
function G̃, as given in (10):

tr(G̃(x, x)) = 1

C̃
tr

(
�̃1(x)�̃T

2 (x)
)

= 1

C̃
�̃T

1 (x)�̃2(x). (32)

We will now insert the Darboux transformation (3) for �̃1, which can be rewritten by means
of the identity −u′u−1 = u(u−1)′:

�̃1(x) = u(x)
d

dx
(u−1(x)�1(x)). (33)

This we substitute in (32) and arrive at

tr(G̃(x, x)) = 1

C̃

d

dx
(u−1(x)�1(x))T uT (x)�̃2(x)

= 1

C̃

[
d

dx

(
�T

1 (x)�̃2(x)
) − �T

1 (x)(u−1(x))T
d

dx
(uT (x)�̃2(x))

]
. (34)

Let us now have a look at the second term on the right-hand side of the latter equality:

�T
1 (x)(u−1(x))T

d

dx
(uT (x)�̃2(x)) = �T

1 (x)(u−1(x))T ((u′(x))T �̃2(x) + uT (x)�̃ ′
2(x))

= �T
1 (x)(�̃ ′

2(x) + (u′(x)u−1(x))T �̃2(x)).

If we now insert the explicit form of the Darboux transformation (3) for �̃2, then we get

�T
1 (x)(u−1(x))T

d

dx
(uT (x)�̃2(x)) =

(
d

dx
+ (u′(x)u−1(x))T

)(
d

dx
− u′(x)u−1(x)

)
�2(x).

(35)

Since the coefficients in the Dirac equation (5) are real-valued, the matrix u can be chosen
to have real-valued entries. In this case, the two differential operators on the right-hand side
of (35) correspond to the Darboux operator and its adjoint [11]. Application of these two
operators gives

�T
1 (x)(u−1(x))T

d

dx
(uT (x)�̃2(x)) = −(E − λ1)(E − λ2)�

T
1 (x)�2(x).

8
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This we insert into Green’s functions trace (34) and obtain by means of relation (30)

tr(G̃(x, x)) = 1

C̃

[
d

dx

(
�T

1 (x)�̃2(x)
)

+ (E − λ1)(E − λ2)�
T
1 (x)�2(x)

]

= 1

(E − λ1)(E − λ2)C

d

dx

(
�T

1 (x)�̃2(x)
)

+ tr(G(x, x)).

Thus, we find for the trace of Green’s functions difference

tr(G̃(x, x) − G(x, x)) = 1

(E − λ1)(E − λ2)C

d

dx

(
�T

1 (x)�̃2(x)
)
. (36)

Recall that we used the explicit form of the Darboux transformation for the function �̃1 in
(33). If we instead had substituted the Darboux transformation for �̃2, we would have arrived
at the following Green functions difference:

tr(G̃(x, x) − G(x, x)) = 1

(E − λ1)(E − λ2)C

d

dx

(
�̃T

1 (x)�2(x)
)
. (37)

Before we proceed with the integration of the trace, let us derive a relation between the
right-hand sides of (36) and (37). Their difference is zero and thus,

�̃T
1 (x)�2(x) − �T

1 (x)�̃2(x) = K,

for a constant K, the explicit form of which we will derive now. To this end, recall that �1, �2

solve the Dirac equation (5), that the matrix u fulfils (17) and that γ −1 = γ T = −γ :

�̃T
1 (x)�2(x) − �T

1 (x)�̃2(x)

= �T
1 (x)(((u(x)λu−1(x))T − E)γ T − γ (u(x)λu−1(x) − E))�2(x)

= 2E�T
1 (x)γ�2(x) − �T

1 (x)((u(x)λu−1(x))T γ + γ u(x)λu−1(x))�2(x).

We make use of our result (29) and arrive at

�̃T
1 (x)�2(x) − �T

1 (x)�̃2(x) = (2E − λ1 − λ2)C. (38)

We now integrate (36), using the latter relation (38) and the boundary conditions (9) for the
transformed functions �̃1 and �̃2:∫ b

a

tr(G̃(x, x) − G(x, x)) = 1

(E − λ1)(E − λ2)C

(
�T

1 (x)�̃2(x)
)∣∣∣∣

b

a

= − 1

(E − λ1)(E − λ2)C

(
�T

1 (a)�̃2(a)
)

= − 1

(E − λ1)(E − λ2)C

(
�̃T

1 (a)�2(a) − (2E − λ1 − λ2)C
)

= (2E − λ1 − λ2)C

(E − λ1)(E − λ2)C

= 1

E − λ1
+

1

E − λ2
.

This is the trace formula (11) that was to be proved.

5. Application

In the following we present a simple example that illustrates our results.

9
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5.1. The boundary value problem

We consider (5)–(7) for the settings V0 = qσ3 for a constant q, α = β = 0 and a = 0, b = 1,
that is,

γ� ′(x) + (qσ3 − EI)�(x) = 0 (39)

(1, 0)�(0) = 0 (40)

(1, 0)�(1) = 0. (41)

The Hamiltonian associated with equation (39) has discrete spectrum, which consists of
positive and negative energies λ+

n and λ−
n , respectively:

λ±
n = ±

√
(nπ)2 + q2, (42)

where n is a natural number or zero. Let c be an arbitrary real constant, then the solutions �+
n

and �−
n corresponding to λ+

n and λ−
n , respectively, have the form

�±
0 (x) =

(
0

c

)

�±
n (x) =

(
sin(nπx)

− nπ

±
√

(nπ)2+q2+q
cos(nπx)

)
, n ∈ N.

(43)

The functions �±
n fulfil the boundary conditions (6) and (7), as can be verified by

straightforward substitution.

5.2. Green’s functions trace

We are now ready to construct the Green’s function of the boundary value problem (39)–(7)
according to (8). To this end, let E be a real number such that E �= λ±

n for all n ∈ N0.
Furthermore, let �1 and �2 be defined as

�1(x) =
⎛
⎝ sin(

√
E2 − q2x)

−
√

E2−q2

E+q
cos(

√
E2 − q2x)

⎞
⎠ (44)

�2(x) =
⎛
⎝ sin(

√
E2 − q2(x − 1))

−
√

E2−q2

E+q
cos(

√
E2 − q2(x − 1))

⎞
⎠ . (45)

Note that these functions �1 and �2 also satisfy the boundary conditions (40) and (41). Now
we can set up Green’s functions trace according to (32):

tr(G(x, x)) = 1

C
�T

1 (x)�2(x)

= 1

C

[
E

E + q
cos(

√
E2 − q2) − q

E + q
cos(

√
E2 − q2(2x − 1))

]
. (46)

Note that the explicit form of the constant C as given in (16) is not needed now and will be
inserted later.

5.3. The Darboux transformation

We want to apply the Darboux transformation (3) to the solutions �1 and �2 of (39), that
are given in (44) and (45), respectively. To this end, we need the matrix u that contains two

10
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auxiliary solutions u1 and u2, which we take from the set (43):

u1(x) = �−
0 (x)

u2(x) = �−
1 (x).

These auxiliary solutions belong to the following energies (42):

λ−
0 = −q (47)

λ−
1 = −

√
π2 + q2. (48)

The matrix u of auxiliary solutions then reads u = (u1, u2), that is,

u(x) =

⎛
⎜⎝

0 sin(πx)

c
π√

π2 + q2 − q
cos(πx)

⎞
⎟⎠ .

This gives for the term u′u−1 that occurs in the Darboux transformation (3):

u′(x)u−1(x) =
(

πcotan(πx) 0

−
√

π2 + q2 − q 0

)
.

On employing this result, we can write down the Darboux transformation (3), applied to the
function �1 as given in (44):

�̃1(x) = � ′
1(x) − u′(x)u−1(x)�1(x)

=
(√

E2 − q2 cos(
√

E2 − q2x) − πcotan(πx) sin(
√

E2 − q2x)

(E +
√

π2 + q2) sin(
√

E2 − q2x)

)
. (49)

In the same way we obtain the Darboux transformed solution �̃2, if we apply the Darboux
transformation (3) to the solution �2 as given in (45), this time using the auxiliary functions
u1 = �+

0 and u2 = �−
1 . This process yields

�̃2(x) = � ′
2(x) − u′(x)u−1(x)�2(x)

=
(√

E2 − q2 cos(
√

E2 − q2(x − 1)) − πcotan(πx) sin(
√

E2 − q2(x − 1))

(E +
√

π2 + q2) sin(
√

E2 − q2(x − 1))

)
. (50)

We observe that the functions �̃1 and �̃2 fulfil the boundary conditions (9) that read in the
present case a = 0 and b = 1:

�̃1(0) = �̃2(1) = 0,

where evaluation of the functions �̃1 and �̃2 is understood in the sense of a limit.

5.4. The transformed trace and the trace formula

We can now construct the trace of Green’s function G̃ that corresponds to the functions �̃1

and �̃2. To this end, we employ (32), inserting (49) and (50):

tr(G̃(x, x)) = 1

C̃
�̃T

1 (x)�̃2(x)

= 1

C̃
[(E +

√
π2 + q2)2 sin(

√
E2 − q2x) sin(

√
E2 − q2(x − 1))

+ (
√

E2 − q2 cos(
√

E2 − q2x) − πcotan(πx) sin(
√

E2 − q2x))

× (
√

E2 − q2 cos(
√

E2 − q2(x − 1))− πcotan(πx) sin(
√

E2 − q2(x − 1)))].

(51)

11
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We are now ready to verify the trace formula (11) for the present example. Integration of trace
(46) gives∫ 1

0
tr(G(x, x)) dx = 1

C

[
E

E + q
cos(

√
E2 − q2) − q√

E − q(E + q)
3
2

sin(
√

E2 − q2)

]
. (52)

Next, integration of trace (51) yields the result∫ 1

0
tr(G̃(x, x)) = 1

C̃

[
E(E +

√
π2 + q2) cos(

√
E2 − q2)

+
q2 − 2E2 − E

√
π2 + q2√

E2 − q2
sin(

√
E2 − q2)

]
. (53)

In the final step we need the explicit form of the constant C that appears in (52). From (16)
and (44), (45) we infer that

C = �T
1 (x)γ�2(x)

= −
√

E − q

E + q
sin(

√
E2 − q2). (54)

We now replace C̃ in (53) via relation (30), insert the explicit form of C as given in (54), and
compute the difference of (53) and (52). This gives after simplification∫ 1

0
tr(G̃(x, x) − G(x, x)) dx = 1

E + q
+

1

E +
√

π2 + q2
.

This is precisely the trace formula (11), where λ1 and λ2 are given by (47) and (48), respectively.

6. Concluding remarks

In this paper we have established a simple trace formula for Dirac equations with Sturm–
Liouville boundary conditions that are related to each other by a Darboux transformation.
The presence of Sturm–Liouville boundary conditions guarantees the existence of a discrete
spectrum, which in turn prevents the trace of Green’s functions from divergence. This fact has
also been an issue in the context of Schrödinger equations [12] and effective mass Schrödinger
equations [9], where in the first case it has been resolved. Existence and form of trace formulae
for the case of Dirac equations with more general boundary conditions will be subject to further
study.
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